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THE PROBLEM OF THE BOUNDEDNESS OF THE CONTACT PRESSURES ON THE OUTLINE 
OF AN ELLIPTICAL STAMP INTERACTING WITH AN ELASTIC LAYER* 

V.S. POROSHIN 

The possibility of constructing a bounded solution of the integral equation 

of the contact problem for an elastic layer in the case of an elliptical 

stamp with a polynomial base is investigated. It is shown that the 

contact domain for a parabolic stamp turns out to be elliptical if the 

relative thickness of the layer is fairly large or fairly small. 

It is well-known that the solution of the contact problem of the 

theory of elasticity without taking account of the friction force with a 

fixed previously assigned contact domain, results in the general case in 

infinite values of the contact pressures on the contact domain contour. 

The hypothesis of the boundedness of the contact pressure distribution 

function on the contact domain contour can be used as the necessary 

condition that the solution of the problem must satisfy. 

Since a function of fairly general form can be approximated to an 

arbitrary degree of accuracy by a certain polynomial, the question of 

whether it is possible to construct a solution, bounded in a certain 

contact domain, for the integral equation of the contact problem for an 

elastic layer with a polynomial free term will be completely natural. 
The question of whether such a solution exists is investigated in 

this paper in the case of an elliptical contact area. 

1. Formulation of the problem. Without taking friction between the stamp and the 

layer, and the layer and the base, into account, the fundamental integral equation of the 

contact problem for an elastic layer can be written in the form /l/ 

e=G(i- v)-’ 

f h Y) = f5 + a.2 + BY - g (2, Y) > 0, (2, Y) E Q 

Here and henceforth, the double integrals are taken over the contact domain628 betweenthe 

stamp and the layer, g (x7 Y) is the contact pressure, h is the layer thickness, J,,(z) is the 

Bessel function, G and v are elastic constants of the layer, 6 + a~ + BY is the rigid dis- 

placement of the stamp under the action of applied force P, and g (57 Y) is a function describ- 

ing the shape of the stamp base. 
The equilibrium condition for the stamp 

P = s! q G q) d&h Pe, = js q (E, 4 W&Q, Pep = ss q (5, q) q&h (1.2) 

must be appended to the integral equation (1.1). 

Here e, and e, are projections of the eccentricity of the application of the force P on the 

x and y axes. 
The solution of (1.1) yielding a minimum of the functional /2/ 

1 = SJ q (5,q) f CL rl) Gdrl (1.3) 

for a given form of the function f(z, y) and small possible variations of the domain 51 must 

be found in problems with a variable contact domain. The condition mentioned is necessary 

and sufficient to determine the boundary L of the contact domain 52; is particular, /3/ we 

obtain from it as a necessary condition the boundedness of the contact pressure e&Y) on L. 

In the case when the function f,(x, y) satisfies the Hglder condition on L, this condition 

takes the simple form 

q (5, Y) = 0, (2, Y) E L 
(1.4) 
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We note that after the contact problem has been solved, the obvious physical conditions 

for the solution must be verified: the displacements of points of the layer surface outside 
the contact domain Q are such that it never intersects the surface of the stamp; q(x,y)> 0 
for (5, y) E Q. 

We will rewrite the integral equation (1.1) as follows /l/: 

(1.5) 

where the function F(t), continuous with all its derivatives, can be expanded in an absolutely 
convergent series for 0 <t< 2 

(1.6) 

Values of the constants ai are given in Table 3 in /l/. 
We now consider the integral equation 

obtained from (1.5) for h = h/a+ OQ (a = l/,max*R) and the corresponding contact problem for 
an elastic half-space. From experience in solving plane and axisymmetric contact problems for 
an elastic half-space /l/, Theorems 23.2 and 40.2), it can be asserted that in the general 
spatial case of (1.71, the correctness relationship 

119 (x9 Y) h0) < 4neamQ 11 f (x7 u) hCQ) (1.8) 

holds when the contour L of the odmain n is fairly smooth. 
HereL(e the space of functions absolutely summable in g, and Ma(a) is the space 

of functions whose second derivatives are bounded in 9 . We define the norm in M'(n) by 
the relationship 

11 f IIMw = IDax 1 f 1 + a max II f,’ ) + f fu’ 11 + aa SUP [I 1,” I + I fxu’ 1 + I fv” II (1.9) 

Inequality (1.8) means that an inverse operator R-l, bounded from MS@) in L(9)exists 
for an integral operator A of the form (1.71, where II A” II < 2sQI. For a set of functions 
q (5, y) E L (Q) such that q (5, Y) > 0 in Q, the constant is ma< 1. This results from (1.7). 

We now consider the integral equation (1.5). We will show that if its solution exists 
in L(Q), then it can be obtained by successive approximations for h> h,. To do this, we act 
on both sides of (1.5) with the operator A-' . We obtain 

s=2~eA-‘Ifl+B[ql, B[ql=A-‘[~S;Sq(5,rl)F(~)dSd?] (1.10) 

We will prove that the operator B in the spaceL(8)is a compression operator under the 
condition A>&. Then the above-mentioned assertion will result from the Banach principle. 
We have the estimate 

II B [@‘)I - B [q(*)l II Lla,~~ma[maxIF(t)I+~maxIF’(t)I+ 

-$ max I F” (t) 1 + g max I F’ (t) I t-11 5s I $1) - $2) I dE dq = 

k II P - !P IIL(Q) 

ire now find A, from the equation k= 1 as the least positive root. We note that, by 
(1.5) and (1.6), 

max 1 F (t) I = a,, max I F’ (t) I < 0.5819,2 1 d, I . 
max I F’ (t) I f’ = max I F” (t) I = 2 I a1 I 

(1.11) 

Here 0.58i9 = maxJ, (sl, where J1(z) is the 3essel function and the constantsare a, = 
1.168; d, = -0.521; U, = -0.3% (/l/, Table 3) . Taking account of (1.11) and the inequality 

mo<l, which should hold if the problem is posed correctly physically (i.e., compliance with 
the condition q(x,y)>O is assured in Q ; note that this is knowntobe so if the shape of the 
stamp base is convex), we obtain k< k,, 
h, = 3.37. 

k, = 5.897Aes $ 1.715h-2 + 2.336h-1 ‘= i: hence we find 

2. Solution for a large relative thickness of the layer. We limit ourselves 
to the first M terms in the expansion of F(t)in the form (1.6). Then substituting this seg- 
ment of the series instead of F(t)into (1.51, we will have 
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12.1) 

We will construct a solution of integral equation (2.1) bounded in the elliptic domain 
G (semi-axes a and b; if the shape of the stamp base is given by a polynomial of degree :;, 
i.e. 

k+lGN 

g (x, Y) = k 8, bd:y’ 
Note that a polynomial of degree 

t = max (N,2M) 

is on the right side of (2.1). 
Then, as is known /l/, the solution of (2.1) bounded 

should, if it exists, have the form 

,+fi*-z 
..* 

(2.3) 

in L for the elliptical domain Q 

Substituting (2.4) into (2.1) and integrating on the right and left sides /l/, we obtain 
a relationship interconnecting two polynomials of degree t whose coefficients depend on emn 
and b,, . Equating coefficients of identical powers of x and y, we obtain a system of '/*(t -j- 

1) (t + 2) independent algebraic equations. These equations contain 'lr(t - 1)t unknown coef- 
ficients amn. Of the l/:(N + i)(N + 2) coefficients b,, , lUz(N - 1)N should be arbitrary, 
while the remaining 2N + 1 are additional unknowns for the given quantities &.cL, b, a and b. 
The requirement that the ‘l,(N- l)N coefficients bkl should be arbutrary is necessary so 
that the solution of (1.7) can be obtained from the solution of (2.1) in the special case as 
h+m. 

Therefore, the system of liE(t + $)(t + 2) equations contains 'i,(t - 1) t.i- 2H + 1 unknowns. 
For N>2M it follows from (2.3) that t = N e and therefOre, the number of unknownsagrees 
with the number of equations in the system. For 2M > Nwe will havet = IM,and the unknowns in 
the system are less than the number of equations. It can hence be concluded that if the base 
of the line is a polynomial of degreeN=2p,then the solution of (1.5) that is bounded on the 
contour of the elliptical contact domain, can be obtained for large h only to terms 0(A-2P-a). 

We shall now seek the solution of (1.5) in the form /l/ 

(2.5) 

Substituting (2.5) into both sides of the integral equation (1.5) and equating terms in 
identical powers of h, we obtain an infinite system of integral equations of the form (1.7) 
for the sequential determination of the functions qn(z, y) 

ss qo 6 ‘1) -yf?- = 2W (5, ~4, (2, y) E 5t (2.61 
l 

1s q&rt)-$p ==-a0 1s PO (Es ‘1) a5 dri 

SI ‘q*(Lfl)~=aeSSq~(~,S)d5d? 

j j qs (5, rl) -$$- = 5 5 [atic (5, ‘1) + alqo (f, q) 4 d& dq 

ss qrwlGp=~ 1 [WIS 63 + alql (L q) R*l@ d% . . . 

Since the series (1.6) converges for t<2, or for L> 1, the expansion of the solution 
in the form (2.5) can be constructed for J.>sup (h,, 1). However, we note that the estimated 
value obtained in Sect.1 for h, is exaggerated. If we limit ourselves to keeping terms of 
the order O(h-*) in (2.51, then the results can be used for fi>1.52 (/I/, Table 36) and the 
error will not exceed 5%. 

Now, as above, let the contact domain be an ellipse with semiaxes a and b in planform, 
and let the shape of the stamp base be described by the function g(& Y) =As'i- BY',-4 >o,B> 
0 (parabolic stamp). Let the impressing force P be applied to the stamp Centre of symmetry, 
i.e., e, se, = 0, then also a = fi = 0. Solving the integral equations (2.6) sequentially, 
we construct /l/ the asymptotic solution on the contour of the elliptical domain 8 to terms 
O(A,-t-5) for the case mentioned: 

P(5,Y)=:~(l--$-~)-"*(D 11 -I-+ -t(g)"+ (2.7) 
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(+)” +(t)‘]-~~Yi[AU~-j-E(U,_i-e’)]+ 
kl 

2 

@= 
2o,a5 

i5fwK (e) r, 
Ki [Aq_c - B (cI,_~ - e’)] (CT~ + oie* - b’) 

j=l 

Ki = 
(- qi Gif (5i - 2)* 

(ai-i)[E(e)-(l-si)K(e)] ’ D= 

6 - I/; (An’ + Bb*) 

K (4 

SS(IQa 
K(e), ’ 

ol=~+p, fJ,=2q_p 

p=+_(1 - e2 + e4)‘/a, e=(i-$)I/ 

Here e is the eccentricity of the elliptical domain R, and K(e)and E(e)are complete 
elliptic integrals of the first and second kinds. 

According to the analysis carried out above, a solution of the problem that is bounded 
on the contour of the elliptical contact domain can be obtained from (2.7) to terms O(h+). 
In fact, we require the expression (2.7) for q (3, y) to have the form 

q(z,y)= c$ (I-$-$j’i 

Multiplying (2.7) and (2.8) by (1-xs2ia'-yy2iba)'J8 and then equating coefficients of 
identical powers of x and y, we obtain a system of three equations, by solving which, we can 
express the quantities a, e and C in terms of8,A and B. We then determine the quantity from 
the first equilibrium condition for the stamp (1.2). 

Because it is difficult to solve the system mentioned in the general case, we limit 
ourselves therein to terms 0 (h-2). The system is then simplified radically and takes the 
form 

(2.9) 

$2 Ki[A~si - B(u~_i - e*)]uT'=c 

+&Ki[aU*-i- B(U,i-_)](Ui-2)1=C((i-_)-1 

We first obtain expressions for A and B in terms of C from the last two equationsin (2.9). 
Substituting these results into the first equation in (2.9) and solving, we obtain C. Finally, 
the solution of system (2.9) can be written in the form 

A (2.10) 

C 

We finally find from (2.13) and (1.2) 

(2.11) 

Relations (2.10) and (2.11) of determining a, e and 6 as a function of the magnitude of 
the force P by considering A and B as given, or determining A, B and 6. assuming a and e 
to be given. 

3. Solution for a small relative thickness of the layer. TO characterize a 
layer of small relative thickness in the case of a convex domain, 
dimensionless geometric parameter 

we introduce the following 
P = hlpmm, where ~mi,, is the minimum radius of curvature 

of the contour L of the domainQ. 
The internal (penetrating) asymptotic solution of the integral equation (1.1) has the 

following form for small values of p c/l/, Sect.55) 

q (2, y) _ 8 (hA)-l ii (- 1)’ Dlh”Aif (5, y) 



Here A is the Laplace operator and the constants A and Dt are determined from the follow- 
ing expansion 

u(sh2u+2u) i- 
ch2u-1 =-;i- c 

D&Pi 
to 

(3.2) 

It can be found that 

A = IIt, Do = 1, D, = 0, D, = ‘I41 (3.3) 

The radius of convergence of the series (3.2) is determined by the magnitude of the first 
non-zero root of the function cash 2u- 1 in the complex plane u, in this case the convergence 
will hold for 1 ul<n. It hence follows, for instance, that for a stamp of elliptical plan- 
form with the semiaxes a and b, for 

f(z,y)=exp [f (P++P*+)] (3.4) 

formula (3.1) can be used when the following inequality is satisfied: 

G I(1 - e*) pla + plpl c x (3.5) 

For small p the internal solution is applicable in the whole domain Q with the exception 
of a narrow annular zone adjacent to the contour L. 

A boundary- layer type solution holds in this narrow zone /l/: the relative thickness of 
the boundary layer is of the order of ~1. A boundary-layer type solution tends exponentially 
(as e~p(--n~~'), where n is the shortest distance from the point QE~ to the point PE L 
referred to pmlD ), to the internal solution with distance from the contour L. We furthermore 
assume that the parameter p is so small that a solution of boundary-layer type cannot be taken 
in the computation. 

In the case of the polynomial function f(z,y), the series (3.1) that yields the internal 
solution is truncated. For instance, for a stamp with polynomial base of the form (2.2), the 
internal solution (3.1) will also be a polynomial of degree N. 

It can be shown that for q(z, y) of the form (3.11, condition (1.4) results directly as 
necessary from the condition for a minimum of the functional (1.3). therefore, it is here 
necessary to represent the function *(z, y) for a stamp with base (2.2) in the form 

(3.6) 

when considering the problem assuming the variability of the contact domain in the case of 
the elliptical domain a (semiaxes a and b). 

Let us now substitute the function f(z, y) of the form (1.1) , (2.2) into (3.1)) let us 
perform all the differentiation operations and equate the result obtained to (3.6). We obtain 
a relation connecting two polynomials of degree N, whose coefficients depend on a,,,,, and b,,. 
Equating coefficients of identical powers of x and y, we obtain a system of l/,(N + l)(N + 2) 
independent algebraic equations. These equations contain I/, (N - 1)N unknown coefficients 

amn , consequently,. only ‘/,(N - l)N out of the whole set of coefficients b,, can be arbitr- 
ary. The remaining 2N + 1 coefficients bkl must, as in Sect.2, be considered additional 
unknowns for given values of 6, a, p,a and b. 

We will examine the special case when the shape of the stamp base is a paraboloid, i.e., 
r(t,Y) = .4$+&P@ >O,B>O), while the force P is applied to the stamp centre of symmetry. 
On the basis of (3.1), for this case we find the internal asymptotic solution of the problem 
for small p that vanishes on the contour L of the elliptical oontact domain. According to 

the gneral scheme elucidated above, we have 

f-g)+o(e-q 
nab&3 

A=$, B=+, P=~ 

( 3.7) 

It follows from an asymptotic estimate in the first formula of (3.7) that its error will 
not exceed 5% if n&33, i.e., if the point QE~ is removed by more than 3h from the 

contour L along the normal. 
Thus, in the case of a variable contact domain for a parabolic stamp interacting with 

a layer, the contact domain Cl turns out to be elliptic for sufficiently large I or suffic- 
iently small p . 

The author is grateful to V.M. Aleksandrov for formulating the problem and for his 
interest. 
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CONTACT PROBLEflS OF THE THEORY OF PLASTICITY FOR COMPLEX LOADING* 

V.I. KUZ'MENKO 

The problem of the interaction between a stamp and an elastic-plastic 
body for a non-proportional change in the given loads and taking the 
contact area indeterminacy into account, is considered. It is assumed 
that the material properties are described by differential-linear or 
differential-non-linear relationships between the stress rates and the 
strain rates encompassing a fairly broed group of the theory of plasticity. 
It is shown that the initial problem in a generalized formulation is 
equivalent to a certain quasivariational inequality in the displacement 
velocities. By using a formulation in the form of a quasivariational 
inequality, existence conditions are studied for the solution, and a 
numerical method of investigation is proposed and verified. 

Note that the method of integral equations , utilized extensively in 
the theory of elasticity, can be applied successfully only to certain 
special classes of contact problems of the theory of plasticity /l, 2/. 
Research on general questions of the theory of contact problems for 
elastic-plastic bodies refers to individual plasticity models /3-6/, and 
the numerical methods that have received extensive development are applied 
to contact problems under complex loading by using heuristic algorithms 
/7-g/that require additional investigation and verification. 

1. General formulation of the problem. We consider the quasistatic deformation 
of an elasto-plastic body occupying a domain Q of a three-dimensional Cartesian space bounded 
by a piecewise-smooth surface r . The displacements and deformations are assumed to be small. 
We let t denote a monotonically increasing parameter associated with the loading process, 
which we shall call time. The solution of the problem is considered in at time interval [O,T). 
We let ud (2, t), efj (2, t), and ol,(z,t) denote the components of the displacement vector, and 
of the strain and stress tensors at the point z = (zI,tr,za)~P at the time tE [O,T). We 
assume the body is in the unstressed and unstrained state at the initial time t = 0. We 
denote differentiation with respect to time by a point, and with respect to the space variables 
by a comma. The rule of summation over repeated subscripts is used. 

It is assumed that the behaviour of the body material under complex laoding can be 
described by differential linear or differential non-linear relationships of the form 

The function Aljpp is homogeneous of zeroth degree in et,,' or generally independent of 

aEll in the case of differential linear relationships. We take xl,xtr . . .,x, to be values of 
certain functionals of the strain history. Relations for different versions of flow theory 
and for theories based on the slip concept /lo/ can be represented in the form (1.1). 
Relationships (1.1) are a special version of the theory of elasto-plastic processes /ll/. 
When Atjpq = Atipcr (2) (1.1) correspond to linear elasticity theory for an inhomogeneous aniso- 
tropic body. Note that relationships of the form (1.1) can be used for both active loading 
and unloading processes. 
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